Tornadic Storm Avoidance Behavior in Breeding Songbirds

Henry M. Streby,1,* Gunnar R. Kramer,2 Sean M. Peterson,2 Justin A. Lehman,3 David A. Buehler,3 and David E. Andersen4
1Department of Environmental Science Policy and Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA 94720, USA
2Minnesota Cooperative Fish and Wildlife Research Unit, Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 200 Hodson Hall, St. Paul, MN 55108, USA
3Department of Forestry, Wildlife, and Fisheries, University of Tennessee, Knoxville, TN 37996, USA
4U.S. Geological Survey, Minnesota Cooperative Fish and Wildlife Research Unit, University of Minnesota, 200 Hodson Hall, St. Paul, MN 55108, USA

Summary

Migration is a common behavior used by animals of many taxa to occupy different habitats during different periods [1]. Migrant birds are categorized as either facultative (i.e., those that are forced to migrate by some proximal cue, often weather) or obligate (i.e., those that migrate on a regular cycle) [2, 3]. During migration, obligate migrants can curtail or delay flights in response to inclement weather or until favorable winds prevail [4, 5], and they can temporarily reorient or reverse direction when ecological or meteorological obstacles are encountered [6]. However, it is not known whether obligate migrants undertake facultative migrations and make large-scale movements in response to proximal cues outside of their regular migration periods [3]. Here, we present the first documentation of obligate long-distance migrant birds undertaking a facultative migration, wherein breeding golden-winged warblers (Vermivora chrysoptera) carrying light-level geolocators [7, 8] performed a >1,500 km 5-day circumvention of a severe tornadic storm. The birds evacuated their breeding territories >24 hr before the arrival of the storm and atmospheric variation associated with it. The probable cue, radiating >1,000 km from tornadic storms [9–11], perceived by birds and influencing bird behavior and movements [12–14], is infrasound (i.e., sound below the range of human hearing). With the predicted increase in severity and frequency of similar storms as anthropogenic climate change progresses [15], understanding large-scale behavioral responses of animals to such events will be an important objective of future research.

Results and Discussion

Approximately 50% of the world’s birds migrate, with individuals occupying two or more distinct locations to exploit the relative quality of changing environments [1]. Despite human fascination with avian migration over millennia, many basic questions remain unanswered about how birds migrate and what stimulates migratory behavior [1–3, 16]. Migrant birds are classified as either facultative or obligate migrants [2, 3, 17]. Facultative migration is stimulated or forced by proximal cues, including abrupt changes in weather [18] or food availability [2]. Obligate, or calendar, migration occurs on a regular schedule and is considered genetically hardwired, or innate [2, 16]. Although obligate migrants can delay flights, change course, and even reverse course during migration in response to unfavorable weather [4, 5, 18–20] or ecological obstacles [5], it is not known whether obligate migrants have the behavioral flexibility to respond with large-scale movements when environmental conditions change on their breeding or wintering grounds [3]. In other words, can obligate long-distance migrants undertake facultative migrations?

We opportunistically addressed this question during a study of migration in golden-winged warblers (Vermivora chrysoptera). The golden-winged warbler is a small (~9 g) obligate Neotropical migrant songbird that winters in Central America and northern South America and breeds and raises young in the Great Lakes region and the Appalachian Mountains region of North America [21]. During 2013–2014, we used miniature light-level geolocators [7–8]; see Experimental Procedures) to track migration routes and identify wintering locations of adult male golden-winged warblers (hereafter referred to as warblers) breeding in the Cumberland Mountains of eastern Tennessee, USA. Upon geolocator data analysis, we observed that five (all for which the period of interest was recorded) warblers evacuated their breeding territories in apparent anticipation of an approaching severe tornadic storm system.

Between April 13, 2014 and April 27, 2014, geolocator-marked warblers arrived on their breeding territories after a 5,000 km obligate spring migration from eastern Colombia (H.M.S., unpublished data). Between April 27, 2014 and April 30, 2014, a powerful weather system moved east through the central and southern United States [22]. The supercell storms spawned 84 confirmed tornadoes and caused 35 confirmed human fatalities and >one billion dollars (USD) in property damage [22]. Having arrived on their breeding territories 1–13 days earlier, the warblers commenced a facultative migration on April 26–27, 2014, preceding the arrival of the storm system by 1–2 days (Figure 1). Each warbler took a unique route to the coast of the Gulf of Mexico, ~700 km from their breeding grounds. On April 29–30, 2014, most of the tornadic storm system continued east through North Carolina while heavy rain (>30 cm) fell on the Gulf of Mexico coast [22]. During this period, four warblers remained along the coast of the Florida panhandle, and one warbler continued south along the west coast of Florida and on to western Cuba (Figures 1E–1G). The evacuation routes taken by some of the warblers were reflective of the northern portions of their fall and spring migration routes (Figure 1), suggesting they may have followed familiar routes during this event. All five warblers returned to our study sites May 1–2, 2014, where they resumed defending their territories and where we captured them May 3–9, 2014 and retrieved the geolocators.

Although consistent with respect to circumventing the storm system, the movements we observed were independent among individuals (i.e., different distances and directions moved each day), indicating that the movement away from territories (hereafter referred to as evacuation) in advance of the
approaching storm system was individually based. Transitions (i.e., sunrises and sunsets) in the geolocator data were smooth during this period, suggesting no extraordinary geolocator error due to habitat or weather shading (see Experimental Procedures). The distances traveled were substantially greater than geolocator error typically caused by anomalous weather events or habitat shading in other studies [23] and in ours. The greatest shading error one week before or after this event produced an estimated breeding location 290 km from our study area, whereas locations during this event were 360–1,460 km from our study area. Further, our study area was not extraordinarily cloudy throughout most of the evacuation period (Figure 1; Figure S1 available online). Therefore, we are confident that the estimated locations represented long-distance movements and were as accurate as estimates of known territory locations.

We did not conduct surveys (see Experimental Procedures) on any of the study sites on April 29, 2014 because we performed our own evacuation migration and waited out the storm in Caryville, Tennessee, USA. The five geolocator-marked warblers were not detected during surveys on April 30 2014, but some (7 out of 23; 30% of expected, based on occupancy of surveyed territories on April 30 in previous years and those observed after the storm) male warblers were observed that day. We observed all five warblers defending territories for the remainder of the nesting season. If evacuation migration is not unique to this species, our observations suggest that migratory fallouts (i.e., large numbers of birds stopping on the United States Gulf of Mexico coast after crossing the Gulf of Mexico during spring migration), which occur when strong weather systems pass north of the coast [24], may include some breeding birds falling back rather than falling out, per se.

Weather-driven facultative migration and even specific timing of obligate migration are purportedly stimulated by one or more environmental cues, including changes in

Figure 1. Evacuation Migration Routes Taken by Breeding Golden-Winged Warblers
(A–I) Geolocator-estimated fall 2013 departure dates and migration routes (A) and spring 2014 migration routes and arrival dates (B) of five breeding male golden-winged warblers and their locations (colored circles) between April 26, 2014 and May 2, 2014 (C–I, one day per panel) as a severe tornadic storm developed and crossed the southeastern United States. The one fall migration route traveled within 2 weeks of the equinox is depicted by a dashed line representing reduced confidence in latitude of estimated locations. Our study area (where the birds breed) is depicted by the white star. Weather is depicted as atmospheric water vapor (darker shades of blue indicate colder vapor temperatures modeled from vapor altitude, not necessarily indicating storm intensity); white dashed line represents front edge of the tornadic storm system; red tornado shapes depict tornado locations; and white arrow depicts mean direction of tornado tracks. Daily weather images are from 1200 hr EST, and tornadoes are those that touched down that day (therefore some late-day tornadoes appear ahead of the storm in these images). The asterisk in panels (D) and (E) identifies a low-intensity system that passed north of the study area April 27–28, 2014. Weather data collected by the GOES 13 satellite were retrieved from NOAA’s CLASS, and maps were created with the National Climatic Data Center’s Weather and Climate Toolkit.
every day near Nashville, Tennessee, USA (36.24N, 86.56W; elevation: 277 m; 30 km south of our study area). Upper wind speed (UWS) and upper wind direction (UWD) data were collected at a geopotential height of ~1,500 m from atmospheric soundings that occurred at 2200 hr EDT April 28, 2014. The warblers evacuated the study area 1–2 days earlier, when the system was 400–900 km west and moving directly toward the study area (Figure 1) and before atmospheric conditions indicated the potential for severe weather at the National Oceanic and Atmospheric Administration (NOAA) sounding station in Nashville, Tennessee, 230 km west of our study area (Figure 2; Table S1). Furthermore, the environmental conditions experienced by the warblers immediately before they evacuated were not unique among conditions experienced before and after the evacuation event (Figure 2). The evacuation of these warblers independent of any changes in local environmental cues associated with facultative migration suggests a different cue detected by the warblers one or more days before the storm arrived.

Infrasound, or acoustic waves traveling at frequencies <20 Hz, is below the audible range of human hearing, but often travels at amplitudes >100 db [9]. Infrasound from severe tornadic storm systems can travel thousands of kilometers with little attenuation [9, 10] in the peak frequency range sensed by birds [11]. Responses of multiple bird species to infrasound have been documented [12, 25], the cochlear mechanism of this sensitivity has been identified [13], and the use of natural infrasound for orientation during migration has been described [14]. Birds can detect changes in intensity and Doppler shifts in infrasound [26], suggesting they can sense the movement and direction of severe weather systems from great distances. Although we cannot rule out the possibility that warblers evacuated in response to some other cue, perhaps an undescribed olfactory or visual cue, infrasound is the parsimonious explanation from those available. Perception of infrasound has also been suggested as a possible mechanism for long-distance orientation in nonavian reptiles [27] and communication in dinosaurs [28]. The apparent survival benefit of using infrasound to predict, prepare for, and avoid severe storms or other disasters and the sensitivity to infrasound in nonavian relatives of modern birds leads us to speculate that perception of infrasound may have preceded and possibly facilitated its use as a mapping mechanism during migration [14].

The fitness benefit of obligate migrants sensing the approach of weather systems has been questioned because birds often do not initiate migratory flights until after weather fronts pass and favorable winds prevail [6]. However, this perspective overlooks the immense fitness benefit of surviving by avoiding a severe weather system. In addition to the evacuation migration we observed, it is possible that sensing infrasound from weather systems developing in their flight path contributes to birds reversing or reorienting flights during long-distance obligate migration. Indeed, bar-tailed godwits

<table>
<thead>
<tr>
<th>Date</th>
<th>Max T (°C)</th>
<th>Min T (°C)</th>
<th>Precip (cm)</th>
<th>Press (mb)</th>
<th>GWS (km/hr)</th>
<th>GWD (°)</th>
<th>UWS (km/hr)</th>
<th>UWD (°)</th>
<th>CAPE (kJ/kg)</th>
<th>SWEAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Apr</td>
</tr>
</tbody>
</table>

Please cite this article in press as: Streby et al., Tornadic Storm Avoidance Behavior in Breeding Songbirds, Current Biology (2015), http://dx.doi.org/10.1016/j.cub.2014.10.079
(Limoso lapponicus) initiate their 14,000 km migration from New Zealand to Alaska, USA only when conditions along the entire route are favorable, and infrasound is a suggested mechanism by which the birds could assess those conditions [19]. That three of the warblers we tracked commenced a 11,500 km round-trip evacuation only 1–2 days after completing their 5,000 km obligate spring migration does not support the hypothesis that long-distance migrant birds travel at or near the limits of their physiological or energetic capabilities [29]. Rather, our observations suggest that at least some long-distance migrants can fly substantially farther than their obligate seasonal movements require if need be. Although much of adult annual mortality in migrant songbirds might occur during spring and fall migration [30], songbirds expend roughly twice as much energy during stopovers as they do during migratory flight [31], suggesting that flying around a storm can be more energetically cost effective than enduring it on the ground.

Anthropogenic climate change is predicted to increase the frequency and severity of storms like the supercell tornado outbreak that passed through our study area in late April 2014 [15]. It is therefore notable that the strongest tornado outbreak ever recorded in North America occurred 3 years and 2 days prior to the event we observed in the same geographic region [29]. If such “storm of the century” events continue to occur every few years, it will be important to describe behaviors that might mitigate direct mortality but could also increase energetic demands on breeding birds. Our observations lead to questions about whether birds would evacuate if a similar storm occurs later in the season when birds are more invested in nests or fledglings or if males, but not females, would evacuate and what the energetic demands and fitness consequences might be for these behaviors. With advancements in miniaturization of geolocators and other tracking devices, the coming years promise to be an exciting time for describing large-scale responses by birds to extreme weather events.

Experimental Procedures

Data Collection

We studied golden-winged warblers breeding on three mountaintop-claimed strip mines (three study sites in one study area) in the North Cumberland Mountains Wildlife Management Area of northeast Tennessee, USA (36°16′8″N, 84°17′38″W). We captured, marked, and collected data from warblers following Protocol 4561, approved by the University of Kentucky Institutional Animal Care and Use Committee. In May 2013, we captured 20 adult male warblers on their breeding territories using mist nets and playback of recorded songs to simulate territorial invasion [31]. Of the 20 warblers, four were second-year (SY) birds (first breeding season), and 16 were after-second-year (ASY) birds (at least their second breeding season) when marked in 2013. Each bird was marked with a light-level geolocator (Biotrack model ML6340) with (n = 10) or without (n = 10) a 5 mm light stalk. Geolocators were attached to birds using a lug-loop harness identical to the design used by Streby et al. [32] for radio transmitter attachment in this species but made of 0.5 mm black Stretch Magic jewelry cord (Pepperell Braiding Company) instead of degradable elastic. Geolocators were 0.45–0.51 g (~5% of body mass) including harness. Geolocators caused no apparent effects on return rates, with 47% (9 out of 19; one censored after returning without geolocator) of geolocator-marked warblers and 42% (5 out of 12) of color-banded control warblers returning in 2014. In 2014, we surveyed the study sites from April 21 to May 15 for returning birds. Of the 20 geolocator-marked birds, ten returned and were observed on our study sites. Of the ten birds that returned, one had dropped the geolocator and harnessed at some unknown time (censored from comparison with control birds). A bird was captured and the geolocator was removed on April 24, 2014 (before the storm event), two were not captured despite tremendous effort between May 2, 2014 and May 20, 2014, and one was observed on its territory on multiple days preceding the storm but was not seen after the storm and therefore not captured. The remaining five geolocator-marked warblers are those for which movements are reported here. Of those five warblers, four were ASY birds and one was an SY bird when marked in 2013.

Analysis

We used BASTrak software (Biotrack) to download, decompress, and analyze light intensity data from geolocators and to estimate daily noon locations. We followed methods described by Delmore et al. [33] for data analysis. Briefly, we used light intensity to identify timing of local sunrises and sunsets, using a threshold value of 1 from the arbitrary light range of 0 to 64 recorded by the geolocators [33]. We calibrated locations to the study area when birds were known from ground truthing to be on their territories (May 2013–June 2013) and in the days before and after evacuation (April 2014–May 2014). Latitude and longitude of locations were exported and plotted with weather imagery using the National Climatic Data Center’s Weather and Climate Toolkit (version 3.7.4; National Climatic Data Center). We downloaded weather data and imagery from NOAA’s Comprehensive Large Array-Data Stewardship System (CLASS) server collected by the Geostationary Operational Environmental Satellite (GOES) 13.

Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures, one figure, and one table and can be found with this article online at http://dx.doi.org/10.1016/j.cub.2014.10.079.

Author Contributions

H.M.S., D.E.A., and D.A.B. designed the study; H.M.S., G.R.K., S.M.P., J.A.L., and D.A.B. collected field data; H.M.S. and G.R.K. analyzed data; and all authors, led by H.M.S., wrote the manuscript.

Acknowledgments

These data were collected during a project funded by the U.S. Fish and Wildlife Service and U.S. Geological Survey through Research Work Order No. 98 at the U.S. Geological Survey, Minnesota Cooperative Fish and Wildlife Research Unit, by the National Science Foundation through Postdoctoral Research Fellowship No. 1202729 (H.M.S.), and by the USDA Natural Resources Conservation Service in a grant administered by Indiana University of Pennsylvania. We thank J. Hagnost, A. Bedard, and P. Chilson for enlightening discussion about infrasound and tornadoes. We thank M. Barnes, J. Chancey, L. Coe-Starr, C. Colley, K. Eckert, C. Henderson, W. Hizzle, S. McLaughlin, and N. Seeger for assistance in the field; W. Ford, J. Lar-kin, and H. Salaka for logistical support; and J. Refsnider and the S. Beis-serling Laboratory for comments on early drafts of the manuscript. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Received: October 2, 2014
Revised: October 27, 2014
Accepted: October 29, 2014
Published: December 18, 2014

References

Facultative Migration in Obligate Migrants

Figure S1, related to Figure 1. Evacuation migration routes taken by breeding golden-winged warblers (cloud-cover only). Geolocator-estimated fall 2013 departure dates and migration routes (A) and spring 2014 migration routes and arrival dates (B) of five breeding male golden-winged warblers, and their locations (colored circles) during 26 April – 2 May 2014 (C – I, one day per panel) as a severe tornadic storm developed and crossed the southeastern United States. The one fall migration route traveled within 2 weeks of the equinox is depicted by a dashed line representing reduced confidence in latitude of estimated locations. Our study area (where the birds breed) is depicted by the white star. Weather is depicted as cloud cover; white dashed line represents front edge of the tornadic storm system; red tornado shapes depict tornado touchdown locations; and white arrow depicts mean direction of tornado tracks. Daily weather images are from 1200 h EDT and tornadoes are those that touched down that day (therefore some late-day tornadoes appear ahead of the storm in these images). The asterisk in panels D and E identifies a low-intensity system that passed north of the study area 27 – 28 April 2014. Weather maps were created with the National Climatic Data Center’s Weather and Climate Toolkit.
Table S1, related to Figure 2. Weather variables recorded by the National Weather Service (NWS) and the National Oceanic and Atmospheric Administration (NOAA) from 25 April – 2 May 2014 in Tennessee, USA. Maximum and minimum temperature in degrees Celsius (Max T, Min T, respectively), precipitation (Precip), atmospheric pressure (Press), and ground wind speed (GWS) and direction (GWD) were measured at the NWS station at Oak Ridge, Tennessee, USA (36.02°N – 84.23°W; elevation 277 m; 30 km south of our study area). Wind speed and direction data were collected at a geopotential height of ~1500 m from atmospheric soundings that occurred at 22:00 EDT every day near Nashville, Tennessee, USA (36.24 °N - 86.56 °W; elevation 161 m; 230 km west of our study area). Convective available potential energy (CAPE; kJ/kg), a measure of the potential energy and instability in the atmosphere, and severe weather threat index (SWEAT; unitless), a relative measure of the likelihood for severe weather to develop, were calculated by NOAA based on additional variables collected during atmospheric soundings at the Nashville sounding station. Severe weather is often associated with increasing CAPE values. SWEAT values > 400 signal the chance for the development of severe storms capable of producing tornados. SWEAT values < 300 suggest little to no risk of severe weather.

<table>
<thead>
<tr>
<th>Date</th>
<th>Max T (°C)</th>
<th>Min T (°C)</th>
<th>Precip (cm)</th>
<th>Press (mb)</th>
<th>GWS (km/h)*</th>
<th>GWD (°)**</th>
<th>UWS (km/h)†</th>
<th>UWD (°)††</th>
<th>CAPE (kJ/kg)§</th>
<th>SWEAT‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 April</td>
<td>26</td>
<td>7</td>
<td>0.0</td>
<td>1022</td>
<td>2</td>
<td>68</td>
<td>13</td>
<td>270</td>
<td>0.00</td>
<td>33</td>
</tr>
<tr>
<td>21 April</td>
<td>27</td>
<td>9</td>
<td>0.0</td>
<td>1018</td>
<td>3</td>
<td>225</td>
<td>20</td>
<td>225</td>
<td>0.00</td>
<td>118</td>
</tr>
<tr>
<td>22 April</td>
<td>22</td>
<td>17</td>
<td>0.4</td>
<td>1011</td>
<td>5</td>
<td>225</td>
<td>31</td>
<td>304</td>
<td>0.00</td>
<td>110</td>
</tr>
<tr>
<td>23 April</td>
<td>23</td>
<td>9</td>
<td>0.0</td>
<td>1015</td>
<td>5</td>
<td>45</td>
<td>17</td>
<td>40</td>
<td>0.00</td>
<td>44</td>
</tr>
<tr>
<td>24 April</td>
<td>27</td>
<td>7</td>
<td>0.0</td>
<td>1015</td>
<td>5</td>
<td>180</td>
<td>33</td>
<td>190</td>
<td>0.00</td>
<td>252</td>
</tr>
<tr>
<td>25 April</td>
<td>22</td>
<td>11</td>
<td>0.2</td>
<td>1010</td>
<td>6</td>
<td>250</td>
<td>21</td>
<td>340</td>
<td>0.00</td>
<td>69</td>
</tr>
<tr>
<td>26 April</td>
<td>28</td>
<td>7</td>
<td>0.0</td>
<td>1016</td>
<td>2</td>
<td>180</td>
<td>19</td>
<td>225</td>
<td>0.00</td>
<td>74</td>
</tr>
<tr>
<td>27 April</td>
<td>29</td>
<td>10</td>
<td>0.3</td>
<td>1013</td>
<td>3</td>
<td>225</td>
<td>51</td>
<td>200</td>
<td>0.00</td>
<td>318</td>
</tr>
<tr>
<td>28 April</td>
<td>28</td>
<td>17</td>
<td>0.2</td>
<td>1010</td>
<td>2</td>
<td>250</td>
<td>90</td>
<td>195</td>
<td>1.34</td>
<td>438</td>
</tr>
<tr>
<td>29 April</td>
<td>27</td>
<td>18</td>
<td>2.1</td>
<td>1007</td>
<td>11</td>
<td>205</td>
<td>48</td>
<td>185</td>
<td>0.00</td>
<td>249</td>
</tr>
<tr>
<td>30 April</td>
<td>23</td>
<td>14</td>
<td>1.4</td>
<td>1010</td>
<td>8</td>
<td>245</td>
<td>39</td>
<td>243</td>
<td>0.00</td>
<td>167</td>
</tr>
<tr>
<td>1 May</td>
<td>19</td>
<td>9</td>
<td>0.0</td>
<td>1014</td>
<td>3</td>
<td>270</td>
<td>40</td>
<td>250</td>
<td>0.00</td>
<td>118</td>
</tr>
<tr>
<td>2 May</td>
<td>21</td>
<td>6</td>
<td>0.0</td>
<td>1014</td>
<td>3</td>
<td>225</td>
<td>27</td>
<td>265</td>
<td>0.00</td>
<td>69</td>
</tr>
<tr>
<td>3 May</td>
<td>26</td>
<td>6</td>
<td>0.0</td>
<td>1015</td>
<td>3</td>
<td>270</td>
<td>31</td>
<td>270</td>
<td>0.00</td>
<td>70</td>
</tr>
</tbody>
</table>

* Averaged for the day.
** Azimuthal wind direction (i.e. a wind with a direction of 180° blows from south to north).
† Geopotential height (i.e. height proportional to the potential energy of a unit of mass at the same height above sea level).
‡ Azimuthal wind direction at a geopotential height of 1500 m.
§ CAPE = \(\int_{P_n}^{P_f} (\alpha_P - \alpha_e) \, dp \), where \(\alpha_e \) is the environmental specific volume profile, \(\alpha_P \) is the specific volume of a parcel moving upward moist-adiabatically from the level of free convection, \(P_f \) is the pressure at the level of free convection and \(P_n \) is the pressure at the level of neutral buoyancy.
‡‡ SWEAT = 12(850Td) + 20(TT – 49) + 2(V850) + (V500) + 125(sin(dd500 – dd850) + 0.2), where 850Td is the dewpoint temperature at 850 millibars pressure (mb), TT is the Total Totals Index, V850 is the wind speed at 850 mb, V500 is the wind speed at 500 mb, dd500 is the azimuthal wind direction at 500 mb, and dd850 is the azimuthal wind direction at 850 mb. Wind speed is measured in knots and temperature is measured in degrees Celsius. If TT is less than 49, then that term is set to zero. If winds are not veering (i.e., turning clockwise with increased height), then (dd500 – dd850) is set to zero. If any term is negative, it is set to zero.
<table>
<thead>
<tr>
<th>Date</th>
<th>Max T (°C)</th>
<th>Min T (°C)</th>
<th>Precip (cm)</th>
<th>Press (mb)</th>
<th>GWS (km/h)*</th>
<th>GWD (°)**</th>
<th>UWS (km/h)†</th>
<th>UWD (°)††</th>
<th>CAPE (kJ/kg)§</th>
<th>SWEAT‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 May</td>
<td>31</td>
<td>9</td>
<td>0.0</td>
<td>1016</td>
<td>3</td>
<td>247</td>
<td>37</td>
<td>245</td>
<td>0.00</td>
<td>295</td>
</tr>
<tr>
<td>5 May</td>
<td>31</td>
<td>14</td>
<td>0.0</td>
<td>1013</td>
<td>6</td>
<td>225</td>
<td>39</td>
<td>240</td>
<td>0.00</td>
<td>118</td>
</tr>
<tr>
<td>6 May</td>
<td>31</td>
<td>17</td>
<td>0.0</td>
<td>1013</td>
<td>5</td>
<td>225</td>
<td>24</td>
<td>230</td>
<td>0.00</td>
<td>86</td>
</tr>
<tr>
<td>7 May</td>
<td>31</td>
<td>14</td>
<td>0.0</td>
<td>1017</td>
<td>3</td>
<td>225</td>
<td>43</td>
<td>210</td>
<td>0.00</td>
<td>258</td>
</tr>
<tr>
<td>8 May</td>
<td>31</td>
<td>14</td>
<td>0.0</td>
<td>1020</td>
<td>3</td>
<td>225</td>
<td>52</td>
<td>195</td>
<td>0.00</td>
<td>153</td>
</tr>
<tr>
<td>9 May</td>
<td>26</td>
<td>17</td>
<td>0.0</td>
<td>1018</td>
<td>5</td>
<td>225</td>
<td>46</td>
<td>245</td>
<td>0.00</td>
<td>334</td>
</tr>
<tr>
<td>10 May</td>
<td>26</td>
<td>17</td>
<td>0.4</td>
<td>1018</td>
<td>5</td>
<td>202</td>
<td>22</td>
<td>265</td>
<td>0.70</td>
<td>200</td>
</tr>
<tr>
<td>11 May</td>
<td>28</td>
<td>15</td>
<td>0.0</td>
<td>1020</td>
<td>0</td>
<td>–</td>
<td>30</td>
<td>195</td>
<td>1.37</td>
<td>358</td>
</tr>
<tr>
<td>12 May</td>
<td>32</td>
<td>17</td>
<td>0.0</td>
<td>1020</td>
<td>2</td>
<td>202</td>
<td>26</td>
<td>214</td>
<td>1.00</td>
<td>218</td>
</tr>
<tr>
<td>13 May</td>
<td>31</td>
<td>18</td>
<td>0.1</td>
<td>1019</td>
<td>2</td>
<td>90</td>
<td>30</td>
<td>195</td>
<td>0.00</td>
<td>237</td>
</tr>
<tr>
<td>14 May</td>
<td>31</td>
<td>18</td>
<td>1.4</td>
<td>1017</td>
<td>3</td>
<td>180</td>
<td>59</td>
<td>195</td>
<td>0.30</td>
<td>263</td>
</tr>
<tr>
<td>15 May</td>
<td>19</td>
<td>11</td>
<td>1.4</td>
<td>1015</td>
<td>6</td>
<td>225</td>
<td>26</td>
<td>295</td>
<td>0</td>
<td>68</td>
</tr>
<tr>
<td>16 May</td>
<td>17</td>
<td>6</td>
<td>0.1</td>
<td>1019</td>
<td>5</td>
<td>248</td>
<td>46</td>
<td>275</td>
<td>0</td>
<td>117</td>
</tr>
<tr>
<td>17 May</td>
<td>17</td>
<td>7</td>
<td>0.0</td>
<td>1022</td>
<td>2</td>
<td>225</td>
<td>11</td>
<td>250</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>18 May</td>
<td>21</td>
<td>11</td>
<td>0.0</td>
<td>1023</td>
<td>2</td>
<td>90</td>
<td>2</td>
<td>20</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>19 May</td>
<td>24</td>
<td>9</td>
<td>0.0</td>
<td>1024</td>
<td>2</td>
<td>135</td>
<td>17</td>
<td>210</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td>20 May</td>
<td>28</td>
<td>13</td>
<td>0.0</td>
<td>1021</td>
<td>5</td>
<td>202</td>
<td>74</td>
<td>270</td>
<td>0</td>
<td>314</td>
</tr>
</tbody>
</table>

* Averaged for the day.
** Azimuthal wind direction (i.e. a wind with a direction of 180° blows from south to north).
† Geopotential height (i.e. height proportional to the potential energy of a unit of mass at the same height above sea level).
†† Azimuthal wind direction at a geopotential height of 1500 m.
§ CAPE = \(\int_{P_n}^{P_f} (\alpha_p - \alpha_e) \, dp \), where \(\alpha_e \) is the environmental specific volume profile, \(\alpha_p \) is the specific volume of a parcel moving upward moist-adiabatically from the level of free convection, \(P_f \) is the pressure at the level of free convection and \(P_n \) is the pressure at the level of neutral buoyancy.
‡ SWEAT = \(12(850Td + 20(TT - 49) + 2(V850) + (V500) + 125(sin(dd500 - dd850) + 0.2) \), where \(850Td \) is the dewpoint temperature at 850 millibars pressure (mb), \(TT \) is the Total Totals Index, \(V850 \) is the wind speed at 850 mb, \(V500 \) is the wind speed at 500 mb, \(dd500 \) is the azimuthal wind direction at 500 mb, and \(dd850 \) is the azimuthal wind direction at 850 mb. Wind speed is measured in knots and temperature is measured in degrees Celsius. If \(TT \) is less than 49, then that term is set to zero. If winds are not veering (i.e., turning clockwise with increased height), then \((dd500 - dd850) \) is set to zero. If any term is negative, it is set to zero.
Supplemental Procedures

Species Status

The global population of golden-winged warblers has decreased at an annual rate of 2–3% for the past 45 years [S1], prompting intensive study of habitat requirements and demographic parameters across the breeding distribution [S2-4] and in some areas of the wintering distribution [S5]. Golden-winged warblers are listed as endangered or threatened in most U.S. states and Canadian provinces in which they breed, are considered near threatened on the International Union for Conservation of Nature Red List, and are currently under consideration for listing under the Endangered Species Act by the U.S. Fish and Wildlife Service.

Geolocation Discussion

Archival light-level geolocators are not as precise as satellite or GPS transmitters [S6-7], producing location estimates usually <100 km from known locations depending spatial proximity to the equator, temporal proximity to spring and fall equinoxes, weather, and animal behavior and habitat use [S6,S8]. Our geolocator-based estimates of territorial golden-winged warblers were a median of 79 km (max = 290 km with shading error) from their known locations before and after the evacuation migration event, and we assumed the location estimates during the evacuation event had similar accuracy to those from the breeding grounds before and after the event. Our study area is far from the equator (>36° latitude) and the period of interest was >1 month after the spring equinox, indicating there were no equatorial or equinoxical issues. Shading from cloud cover can affect location estimates from geolocators by making periods of daylight appear shorter and periods of darkness appear longer (i.e. later apparent sunrise and earlier apparent sunset). However, our study area did not experience abnormally cloudy
conditions for much of the evacuation period and the birds evacuated on days that were only partly cloudy (Figure S1). In addition, shading effects from weather or vegetation are usually apparent in geolocator data, causing abrupt or rough transitions between light and dark, not consistent with the smooth transitions we observed during the evacuation event. Finally, cloudy and rainy days at our study area before and after the evacuation event caused errors <100 km outside of normal variation, substantially smaller than the movements undertaken by the evacuated birds.

Field Surveys

We surveyed at least one of the three study sites between dawn and 1400h on most days before, during, and after the evacuation period such that each territory was surveyed at least once every three days. During surveys, 2 – 5 observers systematically traversed a study site on foot using recorded songs to elicit responses from male warblers, confirm occupancy of territories, and identify individually marked warblers (if marked) by observing color leg-band combinations. We observed 3 of the 5 geolocator-marked warblers on territories before the evacuation, none of them during the evacuation, and all 5 after the evacuation. We observed other males on 7/23 (30%) territories we expected to be occupied on the study site we surveyed 30 April 2014, one day before any of the birds we tracked returned from evacuation. The presence of some warblers on our study sites on 30 April 2014 could indicate any of the following: 1) not all warblers evacuated, 2) all warblers evacuated but some returned one or two days before the warblers we tracked, or 3) the warblers present on 30 April were late spring migrants that arrived behind the storm. We speculate that the warblers we tracked would have returned from evacuation one or two days sooner if not for the heavy rain (>30 cm during 29 – 30 April 2014) [S9] that fell on the
Florida panhandle, likely keeping them grounded. The tornadic storm system moved beyond the spring migration route between the Texas coast and Tennessee (Figure 1B) early on 29 April 2014 (Figure 1F), opening the route for late migrants to arrive after the storm but before the warblers we tracked returned. The observation of a female warbler building a nest on 30 April 2014 suggests at least some warblers did not evacuate or they evacuated for a shorter period than those we tracked. Female golden-winged warblers can pair and start building a nest within one day of arrival on the breeding grounds [S10], which maintains the possibility that the observed female arrived from spring migration, or returned from evacuation, on 29 April 2014 and did not remain on the breeding grounds throughout the tornadic storm.

Supplemental References

